Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 20(1): 2329446, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38525945

RESUMO

Botulism is a fatal neurologic disease caused by the botulinum toxin (BoNT) produced by Clostridium botulinum. It is a rare but highly toxic disease with symptoms, such as cramps, nausea, vomiting, diarrhea, dysphagia, respiratory failure, muscle weakness, and even death. Currently, two types of antitoxin are used: equine-derived heptavalent antitoxin and human-derived immunoglobulin (BabyBIG®). However, heptavalent treatment may result in hypersensitivity, whereas BabyBIG®, has a low yield. The present study focused on the development of three anti-BoNT monoclonal antibodies (mAbs), 1B18, C25, and M2, in Nicotiana benthamiana. The plant-expressed mAbs were purified and examined for size, purity and integrity by SDS-PAGE, western blotting and size-exclusion chromatography. Analysis showed that plant-produced anti-BoNT mAbs can fully assemble in plants, can be purified in a single purification step, and mostly remain as monomeric proteins. The efficiency of anti-BoNT mAbs binding to BoNT/A and B was then tested. Plant-produced 1B18 retained its ability to recognize both mBoNT/A1 and ciBoNT/B1. At the same time, the binding specificities of two other mAbs were determined: C25 for mBoNT/A1 and M2 for ciBoNT/B1. In conclusion, our results confirm the use of plants as an alternative platform for the production of anti-BoNT mAbs. This plant-based technology will serve as a versatile system for the development botulism immunotherapeutics.


Assuntos
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Animais , Cavalos , Humanos , Botulismo/prevenção & controle , Tabaco , Anticorpos Monoclonais
2.
Planta Med ; 89(10): 1010-1020, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37072112

RESUMO

Recombinant proteins are a major breakthrough in biomedical research with a wide range of applications from diagnostics to therapeutics. Strategic construct design, consistent expression platforms, and suitable upstream and downstream techniques are key considerations to produce commercially viable recombinant proteins. The recombinant antigenic protein production for use either as a diagnostic reagent or subunit vaccine formulation is usually carried out in prokaryotic or eukaryotic expression platforms. Microbial and mammalian systems dominate the biopharmaceutical industry for such applications. However, there is no universal expression system that can meet all the requirements for different types of proteins. The adoptability of any expression system is likely based on the quality and quantity of the proteins that can be produced from it. The huge demand of recombinant proteins for different applications requires an inexpensive production platform for rapid development. The molecular farming scientific community has been promoting the plant system for nearly 3 decades as a cost-effective alternative to produce high-quality proteins for research, diagnostic, and therapeutic applications. Here, we discuss how plant biotechnology could offer solutions for the rapid and scalable production of protein antigens as low-cost diagnostic reagents for use in functional assays.


Assuntos
Doenças Transmissíveis , Agricultura Molecular , Animais , Plantas Geneticamente Modificadas/metabolismo , Biotecnologia/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Doenças Transmissíveis/diagnóstico , Mamíferos/metabolismo
3.
Biotechnol Rep (Amst) ; 38: e00796, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37056791

RESUMO

Detecting immunity against SARS-CoV-2 is vital for evaluating vaccine response and natural infection, but conventional virus neutralization test (cVNT) requires BSL3 and live viruses, and pseudo-virus neutralization test (pVNT) needs specialized equipment and trained professionals. The surrogate virus neutralization test (sVNT) was developed to overcome these limitations. This study explored the use of angiotensin converting enzyme 2 (ACE2) produced from Nicotiana benthamiana for the development of an affordable neutralizing antibodies detection assay. The results showed that the plant-produced ACE2 can bind to the receptor binding domain (RBD) of the SARS-CoV-2, and was used to develop sVNT with plant-produced RBD protein. The sVNT developed using plant-produced proteins showed high sensitivity and specificity when validated with a group of 30 RBD vaccinated mice sera and the results were correlated with cVNT titer. This preliminary finding suggests that the plants could offer a cost-effective platform for producing diagnostic reagents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...